INSTRUCTIONS FOR SUBMITTING THIS DISTANCE LEARNING ASSIGNMENT BOOKLET

When you are registered for distance learning courses, you are expected to regularly submit completed assignments for correction. Try to submit each Assignment Booklet as soon as you complete it. Do not submit more than one Assignment Booklet in one subject at the same time. Before submitting your Assignment Booklet, please check the following:

- Are all the assignments completed? If not, explain why.
- Has your work been reread to ensure accuracy in spelling and details?
- Is the booklet cover filled out and the correct module label attached?

MAILING

1. Do not enclose letters with your Assignment Booklets. **Send all letters in a separate envelope.**

2. Put your Assignment Booklet in an envelope and take it to the post office and have it weighed. Attach **sufficient postage** and seal the envelope.

FAXING

1. Assignment Booklets may be faxed to the school with which you are registered. Contact your teacher for the appropriate fax number.

2. All faxing costs are the responsibility of the sender.

E-MAILING

It may be possible to e-mail your completed Assignment Booklet to the school with which you are registered. You also may be **required** to e-mail some of your assignments. Contact your teacher for the appropriate e-mail address.
Science 10
Module 2: Energy Flow in Technological Systems
Assignment Booklet 2A
Section 1 Assignment
Learning Technologies Branch
ISBN 0-7741-2698-1

Cover Art: all Photodisc/Getty Images

The Learning Technologies Branch acknowledges with appreciation the Alberta Distance Learning Centre and Pembina Hills Regional Division No. 7 for their review of this Assignment Booklet.

You may find the following Internet sites useful:

Exploring the electronic information superhighway can be educational and entertaining. However, be aware that these computer networks are not censored. Students may unintentionally or purposely find articles on the Internet that may be offensive or inappropriate. As well, the sources of information are not always cited and the content may not be accurate. Therefore, students may wish to confirm facts with a second source.

Copyright © 2005, Alberta Education. This resource is owned by the Crown in Right of Alberta, as represented by the Minister of Education, Alberta Education, 10155 – 102 Street, Edmonton, Alberta, Canada T5J 4L5. All rights reserved.

This courseware was developed by or for Alberta Education. Third-party content has been identified by a © symbol and/or a credit to the source and must be used as is. This courseware may be reproduced in any form, including photocopying, without the written permission of Alberta Education. Changes can be made only to content owned by Alberta Education. For more detailed information, refer to the Terms of Use Agreement. Every effort has been made to acknowledge the original source and to comply with Canadian copyright law. If cases are identified where this effort has been unsuccessful, please notify Alberta Education so corrective action can be taken.

THIS COURSEWARE IS NOT SUBJECT TO THE TERMS OF A LICENCE FROM A COLLECTIVE OR LICENSING BODY, SUCH AS ACCESS COPYRIGHT.
This Assignment Booklet is worth 35 marks out of the total 123 marks for the assignments in Module 2. The value of each assignment and each question is stated in the left margin.

Read all parts of your assignment carefully and record your answers in the appropriate places. If you have difficulty with an assignment, go back to your Student Module Booklet and review the appropriate lesson. Be sure to proofread your answers carefully before submitting your Assignment Booklet.

Section 1 Assignment: Motion and Work

For questions 1 to 6, read each question carefully. Decide which of the choices BEST answers the question. Place your answer in the blank space given.

1. Which statement describes an object travelling with uniform velocity?

 A. An object moves with constant speed along a straight path.

 B. An object moves with constant speed along a curved path.

 C. An object moves so that an imaginary line segment from the object to a reference point changes in length.

 D. An object moves so that an imaginary line from the object to a reference point changes in direction.
2. Which distance–time graph most closely represents an object moving with uniform motion?

A. Distance–Time Graph

B. Distance–Time Graph

C. Distance–Time Graph

D. Distance–Time Graph

3. Which speed–time graph most closely represents an object travelling with uniform motion?

A. Speed–Time Graph

B. Speed–Time Graph

C. Speed–Time Graph

D. Speed–Time Graph
4. What does the area under the line of a speed–time graph represent?

A. acceleration
B. average speed
C. elapsed time
D. distance travelled

Use the following information to answer questions 5 and 6.

Haley was investigating the motion of an object moving on a straight, level air track. She collected distances travelled at regular intervals using a ticker tape. From the resulting data, Haley made the following graph.

![Distance–Time Graph](image)

5. What is the slope of the graph?

A. 4.4 cm/s
B. 8.8 cm/s
C. 9.0 cm/s
D. 13.5 cm/s

6. What does the slope of the graph indicate about the object’s motion?

A. average speed
B. direction of motion
C. distance travelled
D. average acceleration
7. The following ticker tape shows the data of a moving object.

<table>
<thead>
<tr>
<th>Time t (s)</th>
<th>0.00</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
<th>0.70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance d (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use this ticker tape to answer the questions that follow. **Show your work in the space given.**

a. Complete the data table, showing the motion of the object.

b. Draw a distance–time graph based on the data table. Include a line of best fit.

Return to page 25 of the Student Module Booklet and begin Section 1: Lesson 2.
For questions 8 to 14, read each question carefully. Decide which of the choices BEST answers the question. Place your answer in the blank space given.

Use the following information to answer question 8.

Students made the following statements about scalar and vector quantities.

I. A scalar quantity indicates magnitude but no direction.
II. A scalar quantity indicates magnitude and direction.
III. A vector quantity indicates magnitude but no direction.
IV. A vector quantity indicates magnitude and direction.

8. Which statements are correct?

A. statement I only
B. statements I and IV
C. statements II and III
D. statement IV only

9. Which quantities of motion are vector quantities?

A. speed and displacement
B. speed and distance travelled
C. velocity and displacement
D. velocity and distance travelled

10. Which vector in the diagram on the right corresponds to 2 m [E 20° S]?

A. vector 1
B. vector 2
C. vector 3
D. vector 4
11. Based on the position–time graph for an object, what is the average velocity of the object for the first 10.0 s?

A. 1.8 m/s
B. 1.80 m/s
C. 1.8 m/s [E]
D. 1.80 m/s [E]

Position–Time Graph

Use the following information to answer questions 12 and 13.

A ball rolled 12.0 m [E] in 10.0 s, hit an obstacle, and rolled straight back. After the collision, the ball rolled 8.00 m [W] in 6.00 s.

12. What was the average speed of the ball?

A. 1.25 m/s
B. 0.250 m/s
C. 1.25 m/s [E]
D. 0.250 m/s [E]

13. What was the average velocity of the ball?

A. 1.25 m/s
B. 0.250 m/s
C. 1.25 m/s [E]
D. 0.250 m/s [E]

14. An airplane travelled at an average velocity of 250 km/h [E]. The resulting displacement was 625 km [E]. How long did the trip take?

A. 2.50 h
B. 3.75 h
C. 4.25 h
D. 4.50 h
15. A locomotive moved 18.0 m [W] in a time of 6.00 s and stopped. After stopping, the locomotive moved 12.0 m [E] in 10.0 s.

a. Determine the distance travelled by the locomotive. **Show your work.**

b. Determine the displacement of the locomotive. **Show your work.**

For questions 16 to 19, read each question carefully. Decide which of the choices BEST answers the question. Place your answer in the blank space given.

Use the following information to answer question 16.

A passenger car can be moving in the following ways:

I. A car is moving forward while the brake is applied.

II. A car is moving backwards while the brake is applied.

III. A car is in reverse (R) and moving backwards while the gas pedal is pressed down.

IV. A car is in drive (D) and moving forward while the gas pedal is pressed down.

16. In which of these ways would the car be moving with positive acceleration?

A. I only
B. IV only
C. II and III only
D. II and IV only
17. The position–time graph given describes the motion of an object. During which of the intervals (I to IV) is the object undergoing acceleration?

A. I only
B. II only
C. I and III only
D. II and IV only

18. Which position–time graph indicates negative acceleration?

A.
B.
C.
D.
19. Which velocity–time graph indicates positive acceleration?

A. \[
\begin{array}{c}
\text{Velocity–Time Graph} \\
\text{Velocity } v \text{ [m/s]} \\
\text{Time } t \text{ (s)}
\end{array}
\]

B. \[
\begin{array}{c}
\text{Velocity–Time Graph} \\
\text{Velocity } v \text{ [m/s]} \\
\text{Time } t \text{ (s)}
\end{array}
\]

C. \[
\begin{array}{c}
\text{Velocity–Time Graph} \\
\text{Velocity } v \text{ [m/s]} \\
\text{Time } t \text{ (s)}
\end{array}
\]

D. \[
\begin{array}{c}
\text{Velocity–Time Graph} \\
\text{Velocity } v \text{ [m/s]} \\
\text{Time } t \text{ (s)}
\end{array}
\]

20. A passenger bus is travelling 28.0 m/s to the right when the driver applies the brakes. The bus stops in 5.00 s. What is the acceleration (\(\ddot{a}\)) of the bus as it comes to a stop? Show your work.
21. A toy car starts from rest and accelerates at 1.50 m/s\(^2\) [E] for 5.25 s. What is the final velocity, \(v_f\), of the car? **Show your work.**
25. Suppose there is no unbalanced force acting on a moving object. How will the object’s motion continue?

A. The speed of the object will decrease.
B. The speed of the object will increase.
C. The speed of the object will remain the same.
D. The direction of the object’s velocity will change.

26. An elevator does 9.75×10^4 J of work on a person riding up to another floor. How much energy does the person gain?

A. 0 J
B. 9.94×10^3 J
C. 9.75×10^4 J
D. 9.56×10^5 J

27. Complete the following statements by filling in the blanks.

a. A(n) ______________________ is a push or a pull on an object.

b. The application of a force through a distance is called ______________________.

28. Samuel applies a horizontal force of 35.0 N to a sleigh over a distance of 1.50 m along a level surface. Calculate the work done on the sleigh by Samuel. Show your work.

Submit your completed Assignment Booklet 2A to your teacher for assessment. Then return to page 59 of the Student Module Booklet and begin Section 2.